Constants and Math symbols

Index

.

Greek letters in math and science

You find hese symbols my equation page.
I took this from Wiki  and adjusted it with comments that I find useful.

Symbol Name 
Formula
Αα Alpha  
Ββ Beta  
Χχ Chi  
Εε Epsilon

  Young’s modulus

Δ δ= Delta  
Ηη Eta  
 δ  Kronecker delta EFE
Einstein Field equations.

Curly d In partial derivatives
Gamma uc lc.svg Gamma
The Lorenz term in EFE
Ιι Iota  
Κκ Kappa  
Λλ Lambda  
Μμ Mu  
Νν Nu  
Οο Omicron  
Ωω Omega  
Ππ Pi

(product)

 
Φφ

Phi

 
Ψψ Psi  
Ρρ Rho  
Ζζ Zeta  
 
 Re.

 Ramanujan summation.

 Ramanujan summation.
( Wiki )
Σσ
Sigma
Ττ Tau  
Θθ Theta  
Ξξ Xi  
Υυ Upsilon  

 Zeta

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + …

Riemann’s zeta function

     
~ About  
! factorial 4!=4*3*2*1

not equal  

infinity  
Integral

Source: Wiki 

.

Double-struck capital letters in math

Source: http://xahlee.info/comp/unicode_math_font.html

Meaning in Math

  •  → integers.
  •  → natural numbers.
  •  → primes.
  •  → be rational.
  •  → get real.
  •  → complex number.
  •  → quaternions.
  •  → sedenions.
  •  → imaginary part
  •  → real part
  •  → Derivative
  •  → Differential
  •  → euler’s number (natural growth number)
  •  → imaginary unit.
  •  → notation used by engineers for ⅈ
  •  → cardinality of infinite sets.
  •  → continuum

.

Constants

Most information has been taken from 

https://www.forbes.com/sites/ethansiegel/2015/08/22/it-takes-26-fundamental-constants-to-give-us-our-universe-but-they-still-dont-give-everything/#2174185a4b86 that links to Wikipedia

Physical constants

C Value
Name Formula
C 299.792.458 m/s
~300.000 km/s
Speed of light E=mc2

Lorents factor:

6.62607015×10−34 J⋅s Plancks constant

“to calculate the energy of the electromagnetic wave”

 
E=hf
kB 1.38065 × 10−23 J/K   Boltzmann constant

Boltzmanns entropy formula

   

Feigenbaum Constant

 
       
       
       
       
       
       
       

.

Table of set theory symbols

Taken and adapted from www.rapidtables.com

Symbol Symbol Name Meaning /
definition
Example
{ } set a collection of elements A = {3,7,9,14},
B = {9,14,28}
| such that so that A = {x | x\mathbb{R}x<0}
A⋂B intersection objects that belong to set A and set B A ⋂ B = {9,14}
A⋃B union objects that belong to set A or set B A ⋃ B = {3,7,9,14,28}
A⊆B subset A is a subset of B. set A is included in set B. {9,14,28} ⊆ {9,14,28}
A⊂B proper subset / strict subset A is a subset of B, but A is not equal to B. {9,14} ⊂ {9,14,28}
A⊄B not subset set A is not a subset of set B {9,66} ⊄ {9,14,28}
A⊇B superset A is a superset of B. set A includes set B {9,14,28} ⊇ {9,14,28}
A⊃B proper superset / strict superset A is a superset of B, but B is not equal to A. {9,14,28} ⊃ {9,14}
A⊅B not superset set A is not a superset of set B {9,14,28} ⊅ {9,66}
2A power set all subsets of A  
\mathcal{P}(A) power set all subsets of A  
A=B equality both sets have the same members A={3,9,14},
B={3,9,14},
A=B
Ac complement all the objects that do not belong to set A  
A’ complement all the objects that do not belong to set A  
A\B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A \ B = {9,14}
A-B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A – B = {9,14}
A∆B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A⊖B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a∈A element of,
belongs to
set membership A={3,9,14}, 3 ∈ A
x∉A not element of no set membership A={3,9,14}, 1 ∉ A
(a,b) ordered pair collection of 2 elements  
A×B cartesian product set of all ordered pairs from A and B  
|A| cardinality the number of elements of set A A={3,9,14}, |A|=3
#A cardinality the number of elements of set A A={3,9,14}, #A=3
| vertical bar such that A={x|3<x<14}
congruency 3 is cogruent to 15 in modulo 12
(modular arithmetic)
3 ≡ 15 (mod12)
0 aleph-null infinite cardinality of natural numbers set  
1 aleph-one cardinality of countable ordinal numbers set  
Ø empty set Ø = {} A = Ø
\mathbb{U} universal set set of all possible values  
0 natural numbers / whole numbers  set (with zero) \mathbb{N}0 = {0,1,2,3,4,…} 0 ∈ \mathbb{N}0
1 natural numbers / whole numbers  set (without zero) \mathbb{N}1 = {1,2,3,4,5,…} 6 ∈ \mathbb{N}1
integer numbers set \mathbb{Z} = {…-3,-2,-1,0,1,2,3,…} -6 ∈ \mathbb{Z}
rational numbers set \mathbb{Q} = {| x=a/ba,b\mathbb{Z} and b≠0} 2/6 ∈ \mathbb{Q}
real numbers set \mathbb{R} = {x | -∞ < x <∞} 6.343434 ∈ \mathbb{R}
complex numbers set \mathbb{C} = {| z=a+bi, -∞<a<∞,      -∞<b<∞} 6+2i ∈ \mathbb{C}

A pluralist agnostic seeker

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert